

Page No: 25 & 26

(1) We have seen in class 8 that any odd number can be written as the difference of two perfect squares. Use this to draw squares of area 7 square centimetres and 11 square centimetres. What are the lengths of the sides of these squares?

ANSWER

$$3^{2}-2^{2} = 5$$

 $4^{2}-3^{2} = 7$
 $5^{2}-4^{2} = 9$
 $n^{2}-(n-1)^{2} = 2n-1$
Therefore, $4^{2}-3^{2} = 7$
 $6^{2}-5^{2} = 11$

Draw a right angled triangle with hypotenuse 4cm and one side be 3cm.

It's third side be $\sqrt{7}$ cm.

Draw square BCDE as side BC.

Area of square BCDE = $\sqrt{7} \times \sqrt{7} = 7 \text{cm}^2$

Draw a right angled triangle with hypotenuse 6cm and one side be 5cm. It's third side be $\sqrt{11}$ cm.

Draw square QRST as side QR.

Area of square QRST = $\sqrt{11}cm \times \sqrt{11}cm = 11cm^2$

(2) What is the area of the square in the picture? What is the length of its sides?

ANSWER

Since $\triangle ADE$ is a right triangle,

AD=
$$\sqrt{3.5^2-1.5^2}$$

AD=
$$\sqrt{12.25-2.25}$$

AD=
$$\sqrt{10}$$
 cm

- ∴ Side of a square = $\sqrt{10}$ cm
- \therefore Area of square = $\sqrt{10} \times \sqrt{10} = 10 \text{cm}^2$
- (3) Calculate the area of the square and the length of its sides in each of the pictures below:

ANSWER

a)

Since Δ ABC and Δ BDC are right triangles

From \triangle ABC, BC= $\sqrt{AB^2 + AC^2}$

BC=
$$\sqrt{1^2+1^2}$$

$$BC = \sqrt{2} m$$

From \triangle BDC, CD= $\sqrt{BC^2 + BD^2}$

CD=
$$\sqrt{(\sqrt{2})^2 + 1^2}$$

$$\mathbf{CD} = \sqrt{2+1}$$

$$\mathbf{CD} = \sqrt{3} \ \mathbf{m}$$

 \therefore Side of a square = $\sqrt{3}$ m

 \therefore Area of square CDEF = $\sqrt{3} \times \sqrt{3} = 3m^2$

b)

Since Δ ABG , Δ BCG and Δ CDG are right triangles

From \triangle ABG, BG= $\sqrt{1^2+1^2}$ = $\sqrt{2}$ m

From \triangle BCG, CG= $\sqrt{(\sqrt{2})^2+1^2}$ = $\sqrt{3}$ m

From \triangle CDG, GD= $\sqrt{(\sqrt{3})^2+1^2}$ = $\sqrt{4}$ = 2m

 \therefore Side of a square = 2m

Area of square GDEF = $2 \times 2 = 4m^2$

F E D C C

Since \triangle ABG , \triangle BCG, \triangle CDG, \triangle DEG are right triangles

From \triangle ABG, BG= $\sqrt{1^2+1^2}$ = $\sqrt{2}$ m

From \triangle BCG, CG= $\sqrt{(\sqrt{2})^2 + 1^2} = \sqrt{3}$ m

From \triangle CDG, GD= $\sqrt{(\sqrt{3})^2+1^2}$ = $\sqrt{4}$ = 2m

From \triangle DEG, GD= $\sqrt{2^2+1^2}$ = $\sqrt{5}$ m

 \therefore Side of a square = $\sqrt{5}$ m

Area of square GEFH = $\sqrt{5}$ x $\sqrt{5}$ = 5m²

(4) Find three fractions greater than $\sqrt{2}$ and less than $\sqrt{3}$

ANSWER

Approximate value of $\sqrt{2} = 1.414$

Approximate value of $\sqrt{3} = 1.732$

The three fractions between $\sqrt{2}$ and $\sqrt{3}$ are 1.5, 1.6, and 1.65

1.5 =
$$\frac{15}{10}$$
 = $\frac{3}{2}$

1.6 =
$$\frac{16}{10}$$
 = $\frac{8}{5}$

$$1.65 = \frac{165}{100} = \frac{33}{20}$$

Page no: 29 & 30

(1) The hypotenuse of a right triangle is $1\frac{1}{2}$ metres and one of the other sides is $\frac{1}{2}$ metre. Calculate its perimeter, up to a centimetre.

ANSWER

In
$$\triangle$$
 ABC , AC = 1 $\frac{1}{2}$ = $\frac{3}{2}$ m

$$BC = \frac{1}{2} m$$

Since \triangle ABC is a right triangle, $AC^2 = BC^2 + AB^2$

$$(1\frac{1}{2})^2 = (\frac{1}{2})^2 + x^2$$

$$\left(\frac{3}{2}\right)^2 = \left(\frac{1}{2}\right)^2 + x^2$$

$$\frac{9}{4} = \frac{1}{4} + x^2$$

$$x^2 = \frac{9}{4} - \frac{1}{4}$$

$$x^2 = \frac{9-1}{4}$$

$$x^2 = \frac{8}{4} = 2$$

$$\therefore x = \sqrt{2}$$

$$\therefore \text{ Perimeter} = 1 \frac{1}{2} \text{ m} + \frac{1}{2} \text{ m} + \sqrt{2} \text{ m}$$

Perimeter =
$$2 + 1 \cdot 414 = 3.414 \text{ m}$$

(2) The picture below shows an equilateral triangle cut into two triangles along a line through the middle:

- (i) What is the perimeter of one of these?
- (ii) How much is it less than the perimeter of the whole triangle?

ANSWER

(i) In \triangle ADB, AB= 2 m, BD= 1 m

$$AB^2 = BD^2 + AD^2$$

$$2^2 = 1^2 + AD^2$$

$$4 = 1 + AD^2$$

$$AD^2 = 4 - 1 = 3$$

$$\mathbf{AD} = \sqrt{3}$$

Perimeter of \triangle ADB = $1+2+\sqrt{3}$

 $= 3 + \sqrt{3}$

= 3 + 1.73

= 4.73m.

- (ii) \therefore Perimeter of \triangle ABC = 2+2+2= 6m
 - \therefore Decrease in perimeter = 6-4.73= 1.27m

(3) We've seen how we can go on drawing right triangles like this:

ANSWER

(i).

Sides of a first right triangle = 1m, 1m, $\sqrt{2}$ m Sides of a second right triangle = 1m, $\sqrt{2}$ m, $\sqrt{3}$ m Sides of a third right triangle = 1m, $\sqrt{3}$ m, $\sqrt{4}$ m Sides of a fourth right triangle = 1m, $\sqrt{4}$ m, $\sqrt{5}$ m

 \therefore Sides of a tenth right triangle = 1m, $\sqrt{10}$ m, $\sqrt{11}$ m

(ii). Perimeter of tenth right triangle = $1 \text{ m} + \sqrt{10} \text{ m} + \sqrt{11} \text{ m}$ Perimeter of ninth right triangle = $1 \text{ m} + \sqrt{9} \text{ m} + \sqrt{10} \text{ m}$ \therefore Difference of perimeters of 10th and 9th right triangles = $(1 \text{m} + \sqrt{10} \text{ m} + \sqrt{11} \text{ m}) - (1 \text{m} + \sqrt{9} \text{ m} + \sqrt{10} \text{ m})$ = $\sqrt{11} \text{ m} - \sqrt{9} \text{ m}$ = $\sqrt{11} \text{ m} - 3 \text{m}$

GOVIND RAJ.M, HST MATHS, GHSS CHERUNNIYOOR, VARKALA

(4) What is the hypotenuse of a right triangle with perpendicular sides $\sqrt{2}$ centimetres and $\sqrt{3}$ centimetres? How much more is the sum of the perpendicular sides than the hypotenuse?

Hypotenuse=
$$\sqrt{(\sqrt{3})^2 + (\sqrt{2})^2}$$

= $\sqrt{3+2}$
= $\sqrt{5}$ cm = 2.24 cm

sum of perpendicular sides =
$$\sqrt{2} + \sqrt{3}$$

= 1.41 + 1.73 = 3.14

: Difference between hypotenuse and perpendicular sides

= 0.9cm